Edge-colorings of cubic graphs with elements of point-transitive Steiner triple systems

نویسندگان

  • Daniel Král
  • Edita Mácajová
  • Attila Pór
  • Jean-Sébastien Sereni
چکیده

A cubic graph G is S-edge-colorable for a Steiner triple system S if its edges can be colored with points of S in such a way that the points assigned to three edges Electronic Notes in Discrete Mathematics 29 (2007) 23–27 1571-0653/$ – see front matter © 2007 Elsevier B.V. All rights reserved. www.elsevier.com/locate/endm doi:10.1016/j.endm.2007.07.005 sharing a vertex form a triple in S. We show that a cubic graph is S-edge-colorable for every non-trivial affine Steiner triple system S unless it contains a well-defined obstacle called a bipartite end. In addition, we show that all cubic graphs are S-edge-colorable for every non-projective non-affine point-transitive Steiner triple system S.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization results for Steiner triple systems and their application to edge-colorings of cubic graphs

It is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterize Hall triple systems using two forbidden configurations. Our characterizations have several interesting corol...

متن کامل

Wilson-Schreiber Colourings of Cubic Graphs

An S-colouring of a cubic graph G is an edge-colouring of G by points of a Steiner triple system S such that the colours of any three edges meeting at a vertex form a block of S. In this note we present an infinite family of point-intransitive Steiner triple systems S such that (1) every simple cubic graph is S-colourable and (2) no proper subsystem of S has the same property. Only one point-in...

متن کامل

Projective, affine, and abelian colorings of cubic graphs

We develop an idea of a local 3-edge-coloring of a cubic graph, a generalization of the usual 3-edge-coloring. We allow for an unlimited number of colors but require that the colors of two edges meeting at a vertex always determine the same third color. Local 3-edge-colorings are described in terms of colorings by points of a partial Steiner triple system such that the colors meeting at each ve...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007